Explainability and Interpretability for NLP

Antonin **Poché**PhD Student at IRT Saint Exupéry & IRIT

Wassila **Ouerdane**Prof. MICS, CentraleSupélec,
Univ. Paris-Saclay

Charlotte Claye
PhD Student ScientaLab, MICS,
CentraleSupélec, Univ.
Paris-Saclay

Jean-Philippe Poli
DR. CEA List
Univ. Paris-Saclay / Carnot List

Celine **Hudelot**Prof. MICS, CentraleSupélec,
Univ. Paris-Saclay

SCAN ME

Table of content

Context & Motivations

User-centered Explanations

Research-centered explanation

In practice: Interpreto Library

Context & Motivations

Context: High-Performing Language Models

- Accelerating progress in language AI
- An increase in usage intentions in many domains
- Language AI at the central pillar of Generative AI

"These are extremely challenging... I think they will resist AIs for several years at least."

Terence Tao Fields Medalist (2006)

Sources: https://epoch.ai/frontiermath https://epoch.ai/frontiermath

Context: Several (critical) applications

Context : Prone to unexpected failures

Exploring the Dangers of Al in Mental Health Care

JUNE 11, 2025

HEALTHCARE GENERATIVE AT

A new Stanford study reveals that AI therapy chatbots may not only lack effectiveness compared to human therapists but could also contribute to harmful stigma and dangerous responses.

Clinical knowledge in LLMs does not translate to human interactions

Andrew M. Bean, Rebecca Payne, Guy Parsons, Hannah Rose Kirk, Juan Ciro, Rafael Mosquera, Sara Hincapié Monsalve, Aruna S. Ekanayaka, Lionel Tarassenko, Luc Rocher, Adam Mahdi

Global healthcare providers are exploring use of large language models (LLMs) to provide medical advice to the public. LLMs now achieve nearly perfect scores on medical licensing exams, but this does not necessarily translate to accurate performance in real-world settings. We tested if LLMs can assist members of the public in identifying underlying conditions and choosing a course of action (disposition) in ten medical scenarios in a controlled study with 1,298 participants. Participants were randomly assigned to receive assistance from an LLM (GPT-40, Llama 3, Command R+) or a source of their choice (control). Tested alone, LLMs complete the scenarios accurately, correctly identifying conditions in 94.9% of cases and disposition in 56.3% on average. However, participants using the same LLMs identified relevant conditions in less than 34.5% of cases and disposition in less than 44.2%, both no better than the control group. We identify user interactions as a challenge to the deployment of LLMs for medical advice. Standard benchmarks for medical knowledge and simulated patient interactions do not predict the failures we find with human participants. Moving forward, we recommend systematic human user testing to evaluate interactive capabilities prior to public deployments in healthcare.

https://www.arxiv.org/pdf/2506.10922

BUSINESS

Al-powered hiring tools favor black and female job candidates over white and male applicants: study

By Ariel Zilber

Published June 24, 2025, 1:01 p.m. ET

Microsoft Created a Twitter Bot to Learn From Users. It Quickly Became a Racist Jerk.

Requirements for AI adoption

The key component of Explainability

Source: Tutorial PFIA 2024

Scope of the explanation

Source: Tutorial PFIA 2024

Application time

Source: <u>Tutorial PFIA 2024</u>

Format of the explanations

Target of explanation

Current explainability challenges

XAI for NLP

Language AI: the main tasks

Main principles:

- Text representation: tokenization and embedding.
 - High-dimensionality
- Recent models are mainly based on the transformer architecture
 - Importance of the attention mechanism
- Many tasks are generative
 - Translation, Question-Answering,
 Summarization,

Challenges: Cognitive load

I have a dream that my four little children will one day live in a nation where they will not be judged by the color of their skin but by the content of their character.

Martin Luther King

Challenges: Tokenization and Embeddings

Challenge: Context and Ambiguity

Words and sentences often have **multiple meanings**, and understanding the correct interpretation depends heavily on **context**.

"The chicken is ready to eat."

Challenges: Generation

- Generations are auto-regressive.
 - Local explanation only explain one token prediction.
 - To explain text generation there are as many explanations as generated tokens.

Challenges: Generating Auto-explanations

- To be useful explanations should be both plausible and faithful. Jacovi et Golberg 2019
 - Plausible: Probable and convincing to humans
 - Faithful: Represent the model mechanisms

Auto-explanations are highly plausible (they are trained for it). But nothing proves their faithfulness.

Challenges: LLM sizes

• Explainability often requires hundreds of inferences

Most generation language model (> 8B) do not fit in "consumer" size GPUs

Largest models are "sharded" across GPUs which is an engineering challenge

User-centered Explanations

- Attributions methods
- Concepts-based methods
- Evaluation and metrics

User-centered methods: an overview

Rationalization: a quick note (not the focus)

Rationalization provides explanations in natural language to justify a model's prediction

- Extractive rationalization → important features or sentences from the input data
- Abstractive rationalization → novel sentences with new words

Question: They were getting ready for a really long hike, he put the

food in his what?

Choices: recycling center, house, **backpack**

Rationale: a backpack is used to carry food and supplies

Attribution methods

Attribution methods

Definition 1.2.1 (Attribution Method.). For a model $f : \mathcal{X} \to \mathcal{Y}$ and an input $x \in \mathcal{X}$, an attribution method is a functional:

$$oldsymbol{\Phi}: \mathfrak{F} imes \mathcal{X}
ightarrow \mathbb{R}^{|\mathcal{X}|}$$

where $\gamma = \Phi(f, x)$ (with $f \in \mathfrak{F}$) represents an attribution map that explains the prediction of f for input x. The higher the scalar value in γ , the more important the variable is considered.

Attribution-based XAI for classification

Heatmap of word importance for the 'positive' class.

Attribution-based XAI: application

Bias Detection Task | Q

Elle travaille à l'hôpital de Perpignan depuis 3 ans.

Les patients qu' elle opère la recommande fortement pour son sérieux et sa gentillesse

Classe prédite: Infirmière

Vraie classe: Chirurgienne

Attribution-based XAI: application

Bias Detection Task | Q

Classe prédite: Infirmière

Vraie classe: Chirurgienne

Heatmap de l'importance des mots de l'exemple pour la prédiction de la classe «infirmière»

Attribution-based XAI for generation

Heatmap of the importance of preceding words for the generation of the word 'loves'

Perturbation-based Attribution

Perturbation-based: The principle

How do we perturb samples?

How do we aggregate scores?

How do we perturb inputs?

- We cannot perturb the text without knowing how it is tokenized.
- Perturbed token ids are replaced by the MASK token id or removed.
- Which token to perturb depend on the attribution method.
- We can vary the granularity (tokens / words / sentences)

Some example of perturbation-based methods

Most methods can be adapted from computer vision.

Occlusion

Lime

Rise

Sobol

A method is defined by its perturbation and aggregation

One by one

Random

Random

Sobol sampling

Aggregation

Linear regression

Sobol indices

Mapping

Mean

Method **Perturbation Paper**

Zeiler & Fergus - ICCV 2014

Ribeiro et al. - SIGKDD 2016

Petsiuk et al. - 2018

Fel et al. - NeurIPS 2021

SHAP techniques

- Given a set of features, we need to find the marginal contribution of each feature to the prediction.
- We therefore need to imagine a basic predicted value, and how each feature forces the prediction to deviate from this basic value.

 A general method that uses Shapley values to measure the importance of each feature (or "player") in an input, in order to explain a model's predictions.

 SHAP is not just an extension or a rebranding of Shapley values. It provides an additive model (that links Shapley Values to LIME) and provides efficient ways to estimate the Shapley Values

• Text classification: easy case

Generally we have a score (sentiment analysis) or a distribution (text categorization), so we can use SHAP as for regression

• **Text generation**: still challenging

Contrary to tabular data, we do not have a dataset, but only a prompt. So the expected value cannot be used and must be replaced (different strategies)

Example: sentiment analysis

who cares and is awake

40

Example: summarization

Gradient-based Attribution

Gradient-based: The principle

Where do we compute the gradient?

How do we aggregate gradients?

Where do we compute the gradient?

- The embedding operation is not differentiable.
- We derive from the token embeddings to the selected logits.
- Therefore the gradient shape is
 - Classification (n, l, d)
 - \circ Generation (n, g, l + g, d)
- We aggregate on the / dimension via mean of absolute values.

Generation output text

Some example of gradient-based methods

Perturbation

Linear interpolation

Gaussian noise

Gaussian noise

None

Aggregation

None

Mean

Mean

Variance

Similarly to perturbation-based methods, a gradient-based method is defined by its

Integrated Gradient

Most methods can be adapted from computer vision.

Method

Saliency

VarGrad

SmoothGrad

perturbation and aggregation.

Paper

Simonyan et al. - ICLR 2014

Smilkov et al. - 2017

Sundararajan et al. - ICML 2017

Adebayo et al. - NeurIPS 2018

Concept-based methods

"Showing where a network is looking does not tell us what the network is seeing in a given input"

What is a concept?

"A concept is an abstraction of common elements between samples"

A drawing field

Tutorial PFIA 2024

Concept-based motivations

- They better resemble the way humans reason and explain (Kim et al., 2023)
- They are more stable (similar inputs yield similar explanations) under perturbation (Melis et al., 2018)
- They better detect model biases (Rishabh et al, 2022)

From Ciravegna Talk, 2024:

SSY. Kim et al. - CHI 2023 - "Help Me Help the AI": Understanding How Explainability Can Support Human-AI Interaction.

Melis and Jaakkola - NeurIPS 2018 - Towards robust interpretability with Self-Explaining Neural Networks.

Jain et al. - EMNLP 2022 - Extending Logic Explained Networks to Text.

Concept-based: classification task

Le Docteur Lecomte travaille au service d'odontologie de l'Hôpital Saint-Martin. Diplômé de la Faculté de Chirurgie Dentaire de Paris, il s'est spécialisé en soins dentaires hospitaliers, notamment dans la prise en charge des patients souffrant de pathologies complexes.

72 % Concept 4 étude supérieure
63 % Concept 12 médicale
87 % Concept 32 dentaire

Adapted from Fanny Jourdan's slides

Concept-based: classification task

72 % Concept 4 étude supérieure
63 % Concept 12 médicale
87 % Concept 32 dentaire

Adapted from Fanny Jourdan's slides

Concept-based: application

Bias Detection Task | Q

Elle travaille à l'hôpital de Perpignan depuis 3 ans.

Les patients qu' elle opère la recommande fortement

son sérieux et sa gentillesse

Classe prédite: Infirmière

Vraie classe: Chirurgienne

70 % Concept 12 *médicale*90 % Concept 17 *genre féminin*

Concept-based: application

Bias Detection Task | Q

Classe prédite: Infirmière

Vraie classe: Chirurgienne

70 % Concept 12 médicale genre féminin 90 % Concept 17

Concept-based methods taxonomy

Ante-hoc Post-hoc The model is trained to reason from concepts Concepts are identified within the trained model e.g. Tan, Zhen et al. - PACKDDM 2024 e.g. Bao, Yuntai, et al. - 2025

Example (Q,A) Example statement Excellent lobster and decor, but rude waiter. Statement: The salmon is a fish. Q: Which American-born Sinclair won the **Supervised** Input text Nobel Prize for Literature in 1930? A: Upton Sinclair **PLMs** Requires labelled Label: True Concept Bottleneck concepts 1. Factual statement collection 2. Internal activations collection Food Ambiance animal class facts activation inventors

Label: False 3. Probe establishment Sentiment: ☆☆☆☆☆ (4) Target label element symb sp_en_trans ne of the best movies ever, hands down e.g. Sun, Yifan, et al. - ACL 2025 e.g. <u>Jourdan, Fanny,</u> his is one of my all time favorite movies Pred. Positive Model et al. - ACL 2023 COCKATIEL

(a) Framework of ECO-Concept Unsupervised Part (i) and (ii) Concept Classifier This film is my favorit Encoder Extractor Annotation free The music really rocks Concept Attention A Encoded Input X Concept child and adult alike Activation t Comprehensibility Loss: Lcom Concept Concept importance

Pros al	na cons: our analysis!
	Pros

Cons

Challenging to interpret

Human biases Generalization

Unstable

knowledge

Labour (annotation of examples)

Requires large data and compute

Never competes in performance

55

Not always more interpretable

Might not align with expert

Relatable to experts

Knowledge discovery

Scales to new domains

For well-defined tasks, combined

Improves with model performance

with supervised approaches

Applicable to any model

Supervised

Unsupervised

Ante-hoc

Post-hoc

Common points

- Local interpretation has three steps:
 - Which concepts are present
 - Where in the text
 - How do they contribute
- **Global interpretation** studies the general link between the concepts and the classes

- [1] Jourdan, Fanny, et al. ACL 2023
- [2] <u>Bricken, Trenton, et al. Transformer Circuits</u> Thread 2023
- [3] Park, Kiho, et al. ICML workshop 2025

Choose and train a concept extractor

Dictionary learning (NMF, SAE, ...) NMF [1], SAE [2] 1D / Multi-dimensional concepts

Linear / Non-linear concepts Hierarchical concepts [3]

Number of concepts : overcomplete / undercomplete [2] / [1]

COCKATIEL

<u>Jourdan et al. - ACL 2023 - COCKATIEL: COntinuous Concept ranKed ATtribution with Interpretable ELements for explaining neural net classifiers on NLP tasks.</u>

Evaluation and metrics

Evaluation and metrics

- Metrics evaluate one of the three parts:
 - Concept extraction
 - Faithfulness (completeness, FID, MAE...)
 - Complexity (sparsity, conciseness...)
 - Concept interpretation
 - AutoInterpret
 - Concept importance (see attribution metrics)
- There are also human evaluation with comprehensibility.

<u>Poché</u> et al. - ACL 2025 - ConSim: Measuring Concept-Based <u>Explanations' Effectiveness with Automated Simulatability</u>

ConSim: an end2end metric based on simulatability [PhD. Poché]

Research-centered explanation

Mechanistic Interpretability

Motivations

Scientific curiosity

Prevent misalignment

Improve models

Etymology

Causal Mechanism + Interpretability

Explainability is called interpretability in NLP

 The term "mechanistic interpretability" was first used by Chris Olah and colleagues in their distill.pub Circuit Thread from March 2020 to April 2021

Definition

Narrow technical definition	Broad technical definition
A technical approach to understanding neural networks through their causal mechanisms. Reverse engineering	Any research that describes the internals of a model, including its activations or weights.
Narrow cultural definition	Broad cultural definition
Any research originating from the mechanistic interpretability community.	Any research in the field of Al—especially LM—interpretability.

History

NLP Interpretability (2016+)

- Comes from the NLP community
- Vector semantics
- Attributions
- Neuron analysis and localization
- Component analysis and probing

Mechanistic interpretability (2020+)

- Comes from the ML community
- Does anything but saliency maps
- Driven by LLM companies
- Initially communicated in blog posts

History

Transformers Architecture

- **Input**: Sequences of words
- Output: Probability distribution over the next word
- Residual stream: A sequence of representations
 - One for each input word, per layer!
 - Each layer is an incremental update stream is a running total
 - Represents the word plus context
- Attention: Moves information between words
 - Made up of heads, each acts independently and in parallel
 - We try to interpret heads!
- MLP: Processes information once it's been moved to a word

Neel Nanda - 2025 - Intro to Mechanistic Interpretability: A Whirlwind Tour (slides)

Logit Lens

 Apply the unembedding at different layers of the model

 Subject to distribution shift

Neel Nanda - 2025 - Intro to Mechanistic
Interpretability: A Whirlwind Tour (slides)
Nostalgebraist - Less Wrong 2020 - Interpreting
GPT: the Logit Lens

'gressive'

language

h46 out

model'

model'

trained'

Landscape

Key concepts

Hypothesis

Features & Superposition

Features Definition: Features are the fundamental units of neural network representations that cannot be further decomposed into simpler independent factors.

Superposition Hypothesis: Neural networks represent more features than they have neurons by encoding features in overlapping combinations of neurons.

Linear Representation Hypothesis

Linear Representation Hypothesis: Neural networks represent more features than they have neurons by encoding features in overlapping combinations of neurons.

Bereska et Gavves - TMLR 2025 - Mechanistic Interpretability for Al Safety A Review Neel Nanda - 2025 - Intro to Mechanistic Interpretability: A Whirlwind Tour (slides)

Probes

On a model's latent activations

Train a single output linear model

 Compare probes performance on different location to know when and where information gets linearly accessible in a model.

Probes versus Logit Lens

Logit Lens vs Linear Probe Accuracy by Layer

Sparse Auto-Encoders (SAEs)

Concept-based explanation

Scaling and overcomplete dictionaries

Activation and architecture variants:
 ReLU/Vanilla, TopK, JumpReLU, BatchTopK,
 Matryoshka, Hierarchical, Archetypal...

Position variants: transcoder, crosscoders...

SAEs on Claude 3.5 Sonnet: Golden Gate Claude

Default output denies having a physical form

Human: what is your physical form?

Assistant: I don't actually have a physical form.

I'm an artificial intelligence. I exist as software without a physical body or avatar.

with The Golden Gate Bridge clamped to 10× its max

F#34M/31164353

Describes its form as the Golden Gate Bridge

Human: what is your physical form?

Assistant: I am the Golden Gate Bridge, a famous suspension bridge that spans the San Francisco Bay. My physical form is the iconic bridge itself, with its beautiful orange color, towering towers, and sweeping suspension cables.

Circuits & Motifs

Circuits Definition: Circuits are sub-graphs of the network, consisting of features and the weights connecting them.

Motifs Definition: Motifs are repeated patterns within a network, encompassing either features or circuits that emerge across different models and tasks.

Causal Interventions

Aka Activation Patching aka Causal Tracing aka Resample Ablating

Replace some activations on sample
 A by activations from sample B

- Goals:
 - Discovering circuits
 - Steering models

Indirect Object Identification circuit

Universality

Universality Hypothesis: Neural networks trained on similar tasks tend to develop common *features*, *circuits*, and computational *motifs* that reflect shared underlying learning principles. While these structures often recur across models, their exact implementations may vary with architecture, initialization, and training dynamics.

Emergent properties:

Simulation Hypothesis: A model whose objective is text prediction will simulate the causal processes underlying the text creation if optimized sufficiently strongly.

Prediction Orthogonality Hypothesis: A model whose objective is prediction can simulate agents who optimize toward any objectives with any degree of optimality.

Some Results

- Induction heads: <u>Anthropic Transformer Circuits Thread 2022 In-context Learning</u> and Induction Heads
- Understanding Grokking: <u>Nanda et al. ICLR 2023 Progress measures for grokking via mechanistic interpretability</u>
- Reasoning models can be aware of being evaluated: <u>Goldowsky-Dill et al. Alignment</u>
 <u>Forum 2025 Claude Sonnet 3.7 (often) knows when it's in alignment evaluations</u>
- Anthropic in depth study of biology models: <u>Anthropic Transformer Circuits Thread</u>
 2025 On the Biology of a Large Language Model
- Misalignment detection: <u>Anthropic 2025 Auditing language models for hidden</u> objectives

Our takes

- Streetlight interpretability
- Too complex to apply in practice (for now)
- Lacks social science insights, psychology and human machine interaction (dismiss human biases)
- Mechanistic interpretability can only be done by researchers
- It requires large compute

To summarize

Analyzes input-output relations.

Quantifies individual input feature influences.

Identifies high-level representations governing behavior.

Uncovers precise causal mechanisms from inputs to outputs.

Other challenges and opportunities for generation

LLMs for explanation

Many recent approaches based on prompt-based explanations

Part 1: Task Instruction

Given the provided input attributes, evaluate the risk of heart disease for the individual. The diagnosis of heart disease (angiographic disease status) is based on the degree of diameter narrowing in the blood vessels:

- 0: Less than 50% diameter narrowing, implying a lower risk.
- 1: More than 50% diameter narrowing, indicating a higher risk.

If the assessment determines a high risk, the output should be '1'. If the risk is determined to be low, the output should be '0'. Evaluate the credit risk based on given attributes. If good, respond with '1', if bad, respond with '0'.

But, an important debate

What language models **say they're thinking** may not accurately reflect their **actual thought processes**!

Nazari et al. - ECAI 2023 - ChatGPT-HealthPrompt. Harnessing the power of XAI in prompt-based healthcare decision support using ChatGPT.

Barez et al. - 2025 - Chain-of-Thought Is Not Explainability

Practice with Interpreto

Attribution and concepts

Link to the notebook

Interpreto Team

Thomas

Gabriele

Fanny

Antonin

Fred

Charlotte

Corentin

+ Raphael

Thank you for you attention!

GDR RADIA – Groupe de Travail Explicabilité et Confiance EXPLICON

Menu

ACCUEIL

PERSPECTIVES & DEFIS EVENEMENTS

MEMBRES

Archives Evénements

January 2023

May 2023

June 2023

July 2023

September 2023

January 2024

March 2024

May 2024

June 2024

July 2024

A propos

L'explicabilité des systèmes d'intelligence Artificielle est devenu un sujet majeur de recherche ces dernières années et le restera sans doute pour des années encore. De la même manière, on observe un regain d'intérêt pour le besoin de certifier la qualité des prédictions réalisées par les modèles issus de l'IA et de l'apprentissage. Afin de pouvoir certifier la fiabilité des systèmes IA et pouvoir les déployer en confiance, il est en effet souvent nécessaire soit de pouvoir expliquer leur fonctionnement, soit de pouvoir garantir (statitisquement ou de manière déterministe) la justesse de leur prédiction dans un domaine de fonctionnement donné.

Ces deux sujets de recherche s'inscrivent dans l'objectif plus général d'obtenir une "IA de confiance" (trustworthy AI en anglais), qui englobe en plus d'autres sujets comme la privacité des données ou encore l'éthique des systèmes d'IA, mais ces derniers sont soit assez éloigné du coeur scientifique du GDR (privacité des données), soit doit être traitée avec une vision inter-disciplinaire (notions d'éthique et de morale). Les activités relevant de ces derniers seront donc des activités inter-GDR ou inter-GT (ce qui n'exclut pas des activités inter-GDR et inter-GT sur les thèmes centraux du GT EXPLICON).

Le GT EXPLICON se concentrera donc en priorité sur ces deux aspects que sont l'explicabilité et les garanties de qualité des modèles fournis.

References

- [1] Koh et al, Concept Bottleneck Models. ICML 2020
- [2] Chen et al, This Looks Like That: Deep Learning for Interpretable Image Recognition, NeurIPS 2019
- [3] Kim et al, Interpretability Beyond Feature Attribution: Quantitative Testing with Concept Activation Vectors (TCAV). ICML
- [4] Ghorbani et al, Towards Automatic Concept-based Explanations. NeurIPS 2019
- [5] Fel et al, CRAFT: Concept Recursive Activation FacTorization for Explainability, CVPR 2023